Fatigue and conformist traits in the performance of young swimmers

C. Núñez-Espinosa\textsuperscript{a,b,*}, T. Herrera-Valenzuela\textsuperscript{c,d}, P. Valdés-Badilla\textsuperscript{e,f}, C. Estrada-Goic\textsuperscript{g}

\textsuperscript{a} School of Medicine, Universidad de Magallanes, Punta Arenas, Chile.
\textsuperscript{b} Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Chile.
\textsuperscript{c} Escuela de Ciencias del Deporte, Facultad de Salud. Universidad Santo Tomás (UST), Chile.
\textsuperscript{d} Escuela de Ciencias de la Actividad Física, el Deporte y la Salud. Universidad de Santiago de Chile (USACH), Chile.
\textsuperscript{e} Departamento de Ciencias de la Actividad Física, Facultad de Ciencias de la Educación. Universidad Católica del Maule. Talca, Chile.
\textsuperscript{f} Carrera de Entrenador Deportivo, Escuela de Educación. Universidad Viña del Mar, Chile.
\textsuperscript{g} Department of Psychology, Universidad de Magallanes, Punta Arenas, Chile.

ARTICLE INFORMATION: Received 3 November 2020, accepted 6 June 2021, online 9 June 2021

ABSTRACT

Objective: Determine the relationship between the fatigue of adolescent swimmers in high-level competitions during two continuous periods of maximum performance and the degree that swimmers conform to norms during these periods.

Methods: We evaluated the conformist trait and three areas of fatigue in two consecutive competitive periods, in 25 young elite swimmers. The measures were evaluated before (B) and after (A) of pre (t1; t3) and pos (t2; t4) competition in each period. Millon Adolescent Clinical Inventory was applied for identifies the more adherens (AD; n=12) or detached from the norm (DN; n=13) conformist traits. Wingate test, Heart rate variability (RMSSD; SDNN), WISC-V, and Stroop test were evaluated.

Results: DN group present lower fatigue in t1 but an increase in t2, t3, and t4. AN present higher RMSSD\textsubscript{B} and SDNN\textsubscript{B} in t1. In t3, the mental fatigue of DN was correlated negatively with RMSSD\textsubscript{B}; SDNN\textsubscript{B}. Both groups had more SDNN\textsubscript{B} than SDNN\textsubscript{A} in t4.

Conclusions: Physical fatigue was an important conditioning in both groups, however, the DN group may be more sensitive to physiological and mental fatigue directly affecting the sports performance.

Keywords: State of fatigue; Personality trait; Sports performance; Heart rate variability

Fatiga y rasgo conformista en el rendimiento de jóvenes nadadores

RESUMEN

Objetivo: Determinar la relación entre la fatiga de los nadadores adolescentes en competencias de alto nivel, durante dos periodos continuos de máximo rendimiento, y el grado en que los nadadores se ajustan a las normas durante estos períodos.

Métodos: Evaluamos el rasgo conformista y tres áreas de fatiga en dos periodos competitivos consecutivos, en 25 jóvenes nadadores de élite. Las medidas se evaluaron antes (B) y después (A) de pre (t1; t3) y pos (t2; t4) periodo de competencia. Se aplicó el Inventario Clínico de Adolescentes Millon para identificar los rasgos más (AD) o menos (DN) conformistas. Se evaluó la prueba de Wingate, la variabilidad de la frecuencia cardíaca (RMSSD; SDNN), WISC-V y la prueba Stroop.

Resultados: El grupo DN presenta menor fatiga en t1 pero aumentó en t2, t3 y t4. AN presentan RMSSD\textsubscript{B} y SDNN\textsubscript{B} más altos en t1. En t3, la fatiga mental de DN se correlacionó negativamente con RMSSD\textsubscript{B}; SDNN\textsubscript{B}. Ambos grupos tenían más SDNN\textsubscript{B} que SDNN\textsubscript{A} en t4.

Conclusiones: La fatiga física fue una importante condición en ambos grupos, sin embargo, el grupo DN puede ser más sensible a la fatiga fisiológica y mental, lo cual puede afectar directamente el rendimiento deportivo.

Palabras clave: Estado de fatiga; Rendimiento deportivo; Variabilidad de frecuencia cardíaca

* Corresponding author.
E-mail-address: cristian.nunez@umag.cl (C. Núñez-Espinosa).
Resumo

Objetivo: Determinar a relação entre a fadiga de nadadores adolescentes em competições de alto nível durante dois períodos contínuos de pico de desempenho e o grau em que os nadadores se conformam às normas durante esses períodos.

Métodos: Avaliámos o traço conformista e três áreas de fadiga em dois períodos competitivos consecutivos, em 25 jovens nadadores de elite. As medidas foram avaliadas antes (_B) e depois (_A) do período pré (t1; t3) e pós (t2; t4) da competição. O Millon Adolescents Clinical Inventory foi aplicado para identificar os traços mais (AD) ou menos (DN) conformistas. Foram avaliados o teste de Wingate, a variabilidade da frequência cardíaca (RMSSD; SDNN), o WISC-V e o teste de Stroop.

Resultados: O grupo DN apresentou menor fadiga em t1, mas aumentou em t2, t3 e t4. AN tem RMSSD_B e SDNN_B mais altos em t1. Em t3, a fadiga mental ND foi negativamente correlacionada com RMSSD_B e SDNN_B. Ambos os grupos tiveram mais SDNN_B do que SDNN_A em t4.

Conclusões: A fadiga física foi um condicionamento importante em ambos os grupos, entretanto, o grupo ND pode ser mais sensível à fadiga fisiológica e mental que afeta diretamente o desempenho esportivo.

Palavras-chave: Status de fadiga; Desempenho atlético; Variabilidade da frequência cardíaca

Introdução

Nadar é um esporte que envolve o desenvolvimento de diferentes movimentos técnicos que exigem um alto grau de concentração e habilidade. A fadiga é um fator inevitável na prática de natação, que às vezes é exacerbada pela intensidade de treinamento e pelo desejo de alcançar os objetivos. Durante os estágios iniciais de um nadador, o esporte é um desafio para os nadadores em termos físicos e psicológicos. A personalidade do nadador, que inclui a capacidade de manter-se concentrado durante as competições, é fundamental para o desempenho.

 nós

métodos

Experiencial Design

Este estudo foi de seguimento longitudinal (com quatro observações) e foi realizado por três meses, em que dois períodos competitivos consecutivos ocorreram, durante os quais foram realizadas observações. O estudo foi conduzido em duas piscinas, sendo a mais importante para natação, independentemente de idade. Este estudo tenta relacionar o desempenho do nadador com o grau de conformismo durante esses períodos. Se o nadador se conformar às normas durante esses períodos. Nesta análise e hipótese que a fadiga percebida por jovens nadadores pode ser afetada pelo grau de conformismo. É importante para nadadores de todas as idades, já que a fadiga pode afetar o desempenho.


efeitos

A fadiga física é um fator importante nos dois grupos, entretanto, o grupo ND pode ser mais sensível à fadiga fisiológica e mental que afeta diretamente o desempenho esportivo.

Figura 1. Esquema de design experimental. Dois períodos competitivos consecutivos são descritos na figura (C1; C2). PhF: Fadiga física foi avaliada no teste de Wingate, ao longo de um período de 12 semanas, em que dois períodos competitivos consecutivos ocorreram, durante os quais foram realizadas observações. O estudo foi conduzido em duas piscinas, sendo a mais importante para natação, independentemente de idade. Este estudo tenta relacionar o desempenho do nadador com o grau de conformismo durante esses períodos. Se o nadador se conformar às normas durante esses períodos. Nesta análise e hipótese que a fadiga percebida por jovens nadadores pode ser afetada pelo grau de conformismo. É importante para nadadores de todas as idades, já que a fadiga pode afetar o desempenho.

Figura 1. Estudo de design. Dois períodos competitivos consecutivos são descritos na figura (C1; C2). PhF: Fadiga física foi avaliada no teste de Wingate, ao longo de um período de 12 semanas, em que dois períodos competitivos consecutivos ocorreram, durante os quais foram realizadas observações. O estudo foi conduzido em duas piscinas, sendo a mais importante para natação, independentemente de idade. Este estudo tenta relacionar o desempenho do nadador com o grau de conformismo durante esses períodos. Se o nadador se conformar às normas durante esses períodos. Nesta análise e hipótese que a fadiga percebida por jovens nadadores pode ser afetada pelo grau de conformismo. É importante para nadadores de todas as idades, já que a fadiga pode afetar o desempenho.
inclusion in the study for ≥6 months, iii) with an absence of musculoskeletal injuries, iv) find yourself preparing competitions or federated swimming tournaments. Later, to be included in the final analysis, only the participants who successfully completed the evaluations of anthropometric measurements, body composition and physical performance variables were included. Table 1 shows the baseline and anthropometric data of the swimmers in the study. The study was approved by the local research ethics committees (Nº 141/CEC/2018) and conducted in accordance with the World Medical Association and Helsinki Declaration concerning the ethical principles of human experimentation. All swimmers and their parents were given general information in personal interviews. All parents provided written informed consent prior to participation in this study, and athletes provided informed assent.

Table 1. Baseline and anthropometric data for the group

<table>
<thead>
<tr>
<th></th>
<th>Male (n=12)</th>
<th>Female (n=13)</th>
<th>DN (n=13)</th>
<th>AN (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR rest (bpm)</td>
<td>66.5 ± 14.7</td>
<td>78.2 ± 11.6</td>
<td>77.3 ± 11.1</td>
<td>68.2 ± 15.7</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>17.8 ± 3.0</td>
<td>30.0 ± 3.7</td>
<td>23.9 ± 7.1</td>
<td>24.4 ± 7.4</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>54.4 ± 10.5</td>
<td>55.3 ± 9.4</td>
<td>55.0 ± 10.4</td>
<td>54.9 ± 9.5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163.3 ± 8.3</td>
<td>158.1 ± 4.0</td>
<td>161.9 ± 7.5</td>
<td>159.3 ± 6.2</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20.3 ± 2.3</td>
<td>22.1 ± 3.3</td>
<td>20.9 ± 2.9</td>
<td>21.5 ± 3.1</td>
</tr>
<tr>
<td>Age (years)</td>
<td>19.2 ± 2.4</td>
<td>19.3 ± 2.7</td>
<td>19.5 ± 2.4</td>
<td>20.6 ± 2.0</td>
</tr>
</tbody>
</table>

Baseline and anthropometric measurements are presented in two classifications: Gender (Male or female) and adherence condition (DN, Detached from the Norm, AN, Adhering to the Norm). BMI: body mass index. All data are mean ± standard deviation. bpm: Beats per minute.

- **Conformist trait**: self-reporting questionnaire was applied called the Millon Adolescent Clinical Inventory (MACI), which evaluates adolescent personality styles, psychological concerns and psychopathology. This test identifies on three scales swimmers that are more or less conformist, separating the athletes into two groups: the more conformist grouped as Adhering to the Norm (AN) and the less conformist grouped as Detached from the Norm (DN).

- **Anthropometric measurements**: Were registered to body weight in kg with an electronic scale (Scale-tronix, USA; accuracy: 0.1 kg) and height in cm with a stadiometer (Seca 220, Germany; accuracy: 0.1 cm). It was also evaluated using the Segmental Body Composition Analyzer. The percentage of fat mass was evaluated by means of an electrical scale of bioelectric impedance (TANITA, BC-558 IRONMAN®) with a concordance of 89.3% compared to the Dual X-ray Absorption test using standard measurement protocol.

- **Physical fatigue**: was assessed through the Wingate anaerobic exercise test, which is used to evaluate the maximal power and fatigue index of young athletes.

- **Physiological fatigue**: was evaluated based on heart rate variability (HRV), as measured by a Polar V800 sports watch (Polar®, Finland). The beat-to-beat heart rate (RR interval) of every swimmer was registered at least 5 minutes before (B) and after (A) the Wingate test. While being measured, the swimmers remained supine on a stretcher for ten minutes, with only the last 5 minutes being considered for analysis. All tachograms were visually inspected to exclude artifacts and ectopic heartbeats, which did not exceed 3% of the recorded data. Data were analyzed using Kubios HRV® free software (University of Eastern Finland). The time-domain parameters considered for the analysis were the square root of the mean squared differences of successive RR intervals (RMSSD, expressed in ms), which reflects the parasympathetic influence and standard deviation of RR intervals (SDNN), which is thought to reflect total variability (i.e., both the sympathetic and parasympathetic contribution). During the HRV recording, we visually surveyed the volunteers’ breathing frequency for accuracy. The breathing rate was kept higher than 12 cycles per minute.

- **Mental fatigue**: was evaluated twice, both times before competitions (t1 and t3). The evaluation was made by a psychologist through two subtests of the WISC-V (the abbreviated Chilean version), namely the digit retention and the letter-number sequencing tests, as well as and the Stroop color recognition test. We then created a representative mental fatigue index based on the mean of standardized scores from the data collected from the tests.

**Procedure**

The swimmers were monitored at four experimental intervals during a twelve-week period. The first four experimental intervals were evaluated before and after the first (t1 and t2, respectively), and second competition (t3 and t4, respectively). During the week before t1, interviews were held with each athlete and his/her legal guardians and the baseline and anthropometric measurements were evaluated. The procedure was carried out with a qualified professional and each participant could be spoken to verbally to ensure both parties were satisfied with the requirements prior to data collection. Protocols were applied in the experimental intervals to determine the fatigue of swimmers during competitive cycles. Each evaluation was carried out after 24 hours of physical training. All standardized tests were performed in a closed room and performed by the investigator who was blinded from the study participants at the time of the evaluations. Among the conditions of clothing, participants were asked to wear a shirt, shorts, and footwear. Prior to the evaluations, all participants were instructed to (a) rest adequately the night before, sleeping 8 or more hours, (b) not consume stimulant drinks prior to the measurements, (c) consume ~ 2 liters of water during the day above, (d) eat regularly without making modifications to the diet. During the day of the tests, the participants were instructed to give their maximum effort during the tests. Heart rate, body weight, and height were measured before each fatigue protocol. Fatigue was evaluated in three areas: physical, physiological, and mental.

**Statistical analysis**

The data are presented as means and standard deviations (±SD). The normality of the data was verified through the Shapiro-Wilk test and Pearson’s correlation was used to compare the relationship between the swimmers and HRV parameter, conformist traits, and the fatigue index. After this analysis, the means were analyzed with the student t test to compare the AN and DN groups. The probability of a type I error (alpha) was established at 5% and a confidence level of 95%. We set statistical significance at p<0.05.

**Results**

Table 2 lists the HRV (before and after physical fatigue), the Wingate test (Maximal power and fatigue index) and the mental fatigue results of AN and DN groups from the different experimental intervals.

With the swimmers as a whole, there is a positive correlation between the fatigue index and RMSSD_B r_(n=25) = 0.47, p = 0.021 and SDNN_B, r_(n=25) = 0.41, p = 0.047. There was a positive correlation between the conformist traits of all swimmers in t1 with SDNN_A r_(n=24) = -0.48, p = 0.019, RMSSD_A, r_(n=24) = 0.53, p = 0.007, but a negative correlation with RMSSD_A in t2, r_(n=24) = -0.44, p=0.032 and RMSSD_A in t3, r_(n=24) = -0.41; p=0.047. With the DN group in t1 there was a negative correlation between mental fatigue and RMSSD_A r_(n=12) = -0.61; p=0.035 and
between regulatory features and years of experience. The similar years of experience, indicating that there is no relationship experienced swimmers. However, this difference was not evident traits.

Discussion

This research is the first to our knowledge that has studied the presence of these traits in the athletes participating in this study may be due to social aspects characteristic of isolated areas with extreme weather that influence the social development of individuals, which should be analyzed in future research.

A high degree of autonomic activity was observed among the swimmers before the stress test, related to a higher fatigue index in t1. After the first physical test, athletes with more pronounced conformist traits responded better to physiological fatigue based on higher regulation RMSSD_A and SDNN_A in the same experimental interval. However, in t2 and t3 this compensatory reaction to fatigue did not act in the same way in these athletes, presenting a negative correlation between conformist traits and the parasympathetic response observed in RMSSD_A. It is presumed that the accumulated physical fatigue of subjects with greater regulation did not allow the physiological response to being optimal after the first competition.21

The AN group showed greater autonomic modulation and parasympathetic response than the DN group in the stress test t1. However, the group had a higher fatigue rate during the stress test, indicating greater physical fatigue during this period. The DN group had less mental fatigue, which is associated with a lower autonomic and parasympathetic response after exercise, reflecting a physiological response closely associated with the mental activity of the athletes. The lower mental fatigue of this group is related to what has been observed in extroverted swimmers who have a greater capacity to withstand psychic load and fatigue than swimmers with more introverted features. At the end of the first cycle of competition, both groups had a higher maximum power in t2 than t1. However, DN had a higher rate of physical fatigue than before the competition.

In the second cycle of competitions, both groups had less mental fatigue at the beginning of the competition cycle (t3). With the AN group, this decrease is related to greater physical fatigue, although it was significantly less than in t2. Meanwhile, with the DN group, this decrease in mental fatigue only correlates with a lower autonomic response prior to the stress test.

At the end of the last cycle of competitions, it can be seen in t4 that the AN group has a higher maximum power index, following the same physical response of the previous cycle, which shows that the members of the group increase their physical power after competitions, compared to moments before them. Both groups have greater autonomic responses in t4 prior to making the physical effort, compared to the subsequent regulation, reflected in the SDNN values. This response shows that the physiological response to fatigue in both groups is compensatory for the effort they made, presumably due to the accumulated fatigue of the athletes after two cycles of competition. Pérez et al. observed that the personality traits of the swimmers require different stress management strategies in the post-competitive periods, especially with introverted swimmers, which may be highly associated with the traits of the AN group in our study.3

Although no set of personality traits can be used to identify the best swimmers, it is important to know how these traits influence fatigue in young swimmers, since it can be a very important factor in the development of the training of physical and psychophysiological qualities of athletes, which will then have a

### Table 2. Heart rate variability, the Wingate test, and mental fatigue for two experimental groups

<table>
<thead>
<tr>
<th></th>
<th>DN (n=12)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t1</td>
<td>t2</td>
<td>t3</td>
<td>t4</td>
</tr>
<tr>
<td>RMSSD_B (ms)</td>
<td>88 ± 32</td>
<td>54 ± 37</td>
<td>58 ± 33</td>
<td>51 ± 24</td>
</tr>
<tr>
<td>RMSSD_A (ms)</td>
<td>56 ± 43</td>
<td>86 ± 57</td>
<td>71 ± 55</td>
<td>42 ± 32</td>
</tr>
<tr>
<td>SDNN_B (ms)</td>
<td>49 ± 24</td>
<td>53 ± 26</td>
<td>56 ± 22</td>
<td>59 ± 35*</td>
</tr>
<tr>
<td>SDNN_A (ms)</td>
<td>50 ± 23</td>
<td>75 ± 43</td>
<td>64 ± 37</td>
<td>41 ± 28</td>
</tr>
<tr>
<td>Maximal Power (W)</td>
<td>270 ± 121*</td>
<td>315 ± 165</td>
<td>314 ± 141*</td>
<td>348 ± 152</td>
</tr>
<tr>
<td>Fatigue Index (%)</td>
<td>21 ± 6</td>
<td>6 ± 20</td>
<td>28 ± 13</td>
<td>29 ± 14</td>
</tr>
<tr>
<td>Mental Fatigue</td>
<td>6 ± 1</td>
<td>6 ± 1</td>
<td>6 ± 1</td>
<td>6 ± 1</td>
</tr>
</tbody>
</table>

The results of the Wingate test, and Mental Fatigue assessments. RMSSD (the root of the mean squared differences of successive RR intervals) and SDNN (standard deviation of RR intervals) are presented in two periods: before (B) and after (A) the fatigue protocol. Mental fatigue is based on the mean of a standardized score. Significant differences are described according to the following codes: * for p<0.05 between group; ** for p<0.05 in comparison with SDNN_A in the same interval and group; *** for p<0.05 in comparison with t1 in the same group; † for p<0.05 in comparison with t2 in the same group; ‡ for p<0.05 in comparison with t3 in the same group. All data are mean ± standard deviation

<table>
<thead>
<tr>
<th></th>
<th>AN (n=12)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t1</td>
<td>t2</td>
<td>t3</td>
<td>t4</td>
</tr>
<tr>
<td>RMSSD_B (ms)</td>
<td>106 ± 60*</td>
<td>79 ± 62</td>
<td>69 ± 59</td>
<td>43 ± 38</td>
</tr>
<tr>
<td>RMSSD_A (ms)</td>
<td>71 ± 44</td>
<td>53 ± 41</td>
<td>51 ± 38</td>
<td>44 ± 31</td>
</tr>
<tr>
<td>SDNN_B (ms)</td>
<td>77 ± 39*</td>
<td>67 ± 46</td>
<td>60 ± 43</td>
<td>48 ± 34</td>
</tr>
<tr>
<td>SDNN_A (ms)</td>
<td>60 ± 32</td>
<td>52 ± 31</td>
<td>112 ± 213</td>
<td>40 ± 19</td>
</tr>
<tr>
<td>Maximal Power (W)</td>
<td>263 ± 100*</td>
<td>292 ± 88</td>
<td>310 ± 99*</td>
<td>318 ± 80</td>
</tr>
<tr>
<td>Fatigue Index (%)</td>
<td>28 ± 12</td>
<td>28 ± 12*</td>
<td>20 ± 9</td>
<td>22 ± 9</td>
</tr>
</tbody>
</table>

The results of the Wingate test, and Mental Fatigue assessments. RMSSD (the root of the mean squared differences of successive RR intervals) and SDNN (standard deviation of RR intervals) are presented in two periods: before (B) and after (A) the fatigue protocol. Mental fatigue is based on the mean of a standardized score. Significant differences are described according to the following codes: * for p<0.05 between group; ** for p<0.05 in comparison with SDNN_A in the same interval and group; *** for p<0.05 in comparison with t1 in the same group; † for p<0.05 in comparison with t2 in the same group; ‡ for p<0.05 in comparison with t3 in the same group. All data are mean ± standard deviation

SDNN_A, r = -0.63; p=0.027. As well, in t3 there was a negative correlation between mental fatigue and RMSSD_B, r = -0.68; p=0.021, SDNN_B, r = -0.75; p=0.007, and Maximal Power, r = -0.73; p=0.007.

With the AN group in t1, there was a positive correlation between the fatigue index and RMSSD_B, r = 0.58, p=0.039. Nevertheless, there was at the same time a negative correlation in mental fatigue and the fatigue index, r = -0.68, p=0.010 and RMSSD_A and Maximal Power, r = -0.65, p=0.023. In t3, this group had a positive correlation between mental fatigue and the fatigue index, r = 0.68, p=0.016.

### Figure 2

Fatigue index for the experimental groups, the DN group (black bar) and the AN group (grey bar), and intervals. Significant differences are described according to the following codes: a, for t1 vs t2 in the DN group, p=0.021; b, for t2 vs t3 in the AN group, p=0.034; * for DN and AN in t1, p= 0.05.

Discussion

This research is the first to our knowledge that has studied the presence of personality traits in the fatigue response of adolescent swimmers. Previous studies have studied adult swimmers and compared them with novice swimmers. However, we believe that the study of these traits at an early age is important to better address the development of swimmers in their first years of regular competition, especially the DN group that may be more sensitive to physiological and mental fatigue directly affecting the performance.

In the literature, there is a correlation between the number of years of experience of a swimmer and the presence of conformist traits. These features have a stronger presence in less experienced swimmers. However, this difference was not evident in our study. The members of the two groups, AN and DN, have similar years of experience, indicating that there is no relationship between regulatory features and years of experience. The

![Fatigue Index (%) vs Time](image_url)
direct impact on their adult development in sports. The findings of this study suggest that the training plans of young swimmers should include strategies that evaluate conformist traits, having a greater sympathy with those closer to DN. In these athletes, as they are more sensitive to physiological and mental fatigue, longer recovery times and supercompensation should be considered, avoiding mental overtraining. These strategies should be a routine part of every coach’s psychological considerations, especially in the early stages of the sport.

Among the strengths of this study are: the longitudinal design of the study, which measured four times, increasing internal consistency; the follow-up period that considered real and not simulated competitions; the type of measurement instruments that considered validated surveys and objective measurements that can be used in other contexts of training with athletes. The main limitations were: not controlling the rest and the hours of sleep that could influence the physical and psychological fatigue of the athletes; the number of participants that could affect the results. Despite this, this study reports novel information on variables that are little studied and that affect the performance of swimmers.

This study was able to conclude that regulation accounts for different responses to fatigue among adolescent swimmers. Physical fatigue seems to have been the most important conditioning in both competition cycles of the athletes, however, when we relate fatigue to the degree that swimmers conform to norms, the DN group may be more sensitive to physiological and mental fatigue directly affecting the physical performance of athletes, so it is necessary to address this behavior in training models for young swimmers.

Acknowledgements. We thank coaches, parents, and swimmers for their remarkable commitment to evaluating this project. Provenance and peer review. Not commissioned; externally peer reviewed. Ethical Responsibilities. Protection of individuals and animals: The authors declare that the conducted procedures met the ethical standards of the responsible committee on human experimentation of the institution where the study was performed. Confidentiality: The authors are responsible for following the protocols established by their respective healthcare centers for accessing data from medical records for performing this type of publication in order to conduct research/dissemination for the community. Privacy: The authors declare no patient data appear in this article.

Authorship. All the authors have intellectually contributed to the development of the study, assume responsibility for its content and also agree with the definitive version of the article. Conflicts of interest. The authors have no conflicts of interest to declare. Funding. No sources of funding were used to assist in the preparation of this article. References